A new complex generalized Bernstein-Schurer operator

نویسندگان

چکیده

"In this paper, we consider the complex form of a new generalization Bernstein-Schurer operators. We obtain some quantitative upper estimates for approximation these operators attached to analytic functions. Moreover, prove that preserve properties original function such as univalence, starlikeness, convexity and spirallikeness."

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

q−BERNSTEIN-SCHURER-KANTOROVICH TYPE OPERATORS

The aim of this paper is to present a Stancu type Kantorovich modification of q−BernsteinSchurer operators introduced by Muraru [22] and modified by Ren and Zeng [29]. Here, we obtain a convergence theorem by using the well known Bohman-Korovkin criterion and find the estimate of the rate of convergence by means of modulus of continuity and Lipschitz function for these operators. Also, we estab...

متن کامل

A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers

Agrawal et al. (Boll. Unione Mat. Ital. 8:169-180, 2015) introduced a Stancu-type Kantorovich modification of the operators proposed by Ren and Zeng (Bull. Korean Math. Soc. 50(4):1145-1156, 2013) and studied a basic convergence theorem by using the Bohman-Korovokin criterion, the rate of convergence involving the modulus of continuity, and the Lipschitz function. The concern of this paper is t...

متن کامل

Statistical approximation of modified Schurer-type q-Bernstein Kantorovich operators

New modified Schurer-type q-Bernstein Kantorovich operators are introduced. The local theorem and statistical Korovkin-type approximation properties of these operators are investigated. Furthermore, the rate of approximation is examined in terms of the modulus of continuity and the elements of Lipschitz class functions.

متن کامل

On q-analogue of Bernstein-Schurer-Stancu operators

Keywords: q-Bernstein–Schurer–Stancu operators q-integers Modulus of smoothness Rate of convergence a b s t r a c t In the present paper, we introduce the Stancu type generalization of the Bernstein–Schurer operators based on q integers. First, we prove the basic convergence of S ða;bÞ n;p ð:; q; xÞ and then obtain the rate of convergence by these operators in terms of the modulus of continuity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Journal of Mathematics

سال: 2021

ISSN: ['1843-4401', '1584-2851']

DOI: https://doi.org/10.37193/cjm.2021.01.08